
PHP Session
PHP session is used to store and pass information from one page to another
temporarily (until user close the website).

PHP session technique is widely used in shopping websites where we need to store
and pass cart information e.g. username, product code, product name, product price
etc from one page to another.

PHP session creates unique user id for each browser to recognize the user and
avoid conflict between multiple browsers.

PHP session_start() function
PHP session_start() function is used to start the session. It starts a new or resumes
existing session. It returns existing session if session is created already. If session is
not available, it creates and returns new session.

Syntax

1. bool session_start (void)

Example

1. session_start();

PHP $_SESSION
PHP $_SESSION is an associative array that contains all session variables. It is
used to set and get session variable values.

Example: Store information

1. $_SESSION["user"] = "Sachin";

Example: Get information

1. echo $_SESSION["user"];

PHP Session Example
File: session1.php

1. <?php
2. session_start();
3. ?>
4. <html>
5. <body>
6. <?php
7. $_SESSION["user"] = "Sachin";
8. echo "Session information are set successfully.
";
9. ?>
10.Visit next page
11.</body>
12.</html>

File: session2.php

1. <?php
2. session_start();
3. ?>
4. <html>
5. <body>
6. <?php
7. echo "User is: ".$_SESSION["user"];

8. ?>
9. </body>
10.</html>

PHP Session Counter Example
File: sessioncounter.php

1. <?php
2. session_start();
3.
4. if (!isset($_SESSION['counter'])) {
5. $_SESSION['counter'] = 1;
6. } else {
7. $_SESSION['counter']++;
8. }
9. echo ("Page Views: ".$_SESSION['counter']);
10.?>

PHP Destroying Session
PHP session_destroy() function is used to destroy all session variables completely.

File: session3.php

1. <?php
2. session_start();
3. session_destroy();
4. ?>

Generating image in PHP

PHP | imagecreate() Function

The imagecreate() function is an inbuilt function in PHP which is used to
create a new image. This function returns the blank image of given size. In
general imagecreatetruecolor() function is used instead of imagecreate()
function because imagecreatetruecolor() function creates high quality
images.
Syntax:
imagecreate($width, $height)

Parameters: This function accepts two parameters as mentioned above and
described below:

 $width: It is mandatory parameter which is used to specify the
image width.

 $height: It is mandatory parameter which is used to specify the
image height.

Return Value: This function returns an image resource identifier on success,
FALSE on errors.
Below programs illustrate the imagecreate() function in PHP:

Program 1:

<?php

// Create the size of image or blank image
$image= imagecreate(500, 300);

// Set the background color of image
$background_color= imagecolorallocate($image, 0, 153, 0);

// Set the text color of image
$text_color= imagecolorallocate($image, 255, 255, 255);

// Function to create image which contains string.
imagestring($image, 5, 180, 100, "GeeksforGeeks", $text_color);
imagestring($image, 3, 160, 120, "A computer science portal", $text_color);

header("Content-Type: image/png");

imagepng($image);
imagedestroy($image);

?>

Output:

PHP Date and Time

we will see how to get the date & time using the date() & time() function in PHP,
we will also see the various formatting options available with these functions &
understand their implementation through the examples.

Date and time are some of the most frequently used operations in PHP while
executing SQL queries or designing a website etc. PHP serves us with predefined
functions for these tasks. Some of the predefined functions in PHP for date and
time are discussed below.

PHP date() Function: The PHP date() function converts timestamp to a more
readable date and time format.
Why do we need the date() function?
The computer stores dates and times in a format called UNIX Timestamp, which
measures time as a number of seconds since the beginning of the Unix epoch
(midnight Greenwich Mean Time on January 1, 1970, i.e. January 1, 1970,
00:00:00 GMT). Since this is an impractical format for humans to read, PHP
converts timestamp to a format that is readable and more understandable to
humans.

Syntax:
date(format, timestamp)

Explanation:
• The format parameter in the date() function specifies the format of

returned date and time.
• The timestamp is an optional parameter, if it is not included then the

current date and time will be used.
Example: The below program explains the usage of the date() function in PHP.

• PHP

<?php
 echo"Today's date is :";
 $today= date("d/m/Y");
 echo$today;
?>

Output:
Today's date is :05/12/2017

Formatting options available in date() function: The format parameter of the
date() function is a string that can contain multiple characters allowing to

generate the dates in various formats. Date-related formatting characters that
are commonly used in the format string:

• d: Represents day of the month; two digits with leading zeros (01 or
31).

• D: Represents day of the week in the text as an abbreviation (Mon to
Sun).

• m: Represents month in numbers with leading zeros (01 or 12).
• M: Represents month in text, abbreviated (Jan to Dec).
• y: Represents year in two digits (08 or 14).
• Y: Represents year in four digits (2008 or 2014).

The parts of the date can be separated by inserting other characters, like hyphens
(-), dots (.), slashes (/), or spaces to add additional visual formatting.

Example: The below example explains the usage of the date() function in PHP.

• PHP

<?php
 echo"Today's date in various formats:". "\n";
 echodate("d/m/Y") . "\n";
 echodate("d-m-Y") . "\n";
 echodate("d.m.Y") . "\n";
 echodate("d.M.Y/D");
?>

Output:

Today's date in various formats:

05/12/2017

05-12-2017

05.12.2017

05.Dec.2017/Tue

The following characters can be used along with the date() function to format the
time string:

• h: Represents hour in 12-hour format with leading zeros (01 to 12).
• H: Represents hour in 24-hour format with leading zeros (00 to 23).
• i: Represents minutes with leading zeros (00 to 59).
• s: Represents seconds with leading zeros (00 to 59).
• a: Represents lowercase antemeridian and post meridian (am or pm).
• A: Represents uppercase antemeridian and post meridian (AM or PM).

Example: The below example explains the usage of the date() function in PHP.

• PHP

<?php
 echodate("h:i:s") . "\n";
 echodate("M,d,Y h:i:s A") . "\n";
 echodate("h:i a");
?>

Output:
03:04:17

Dec,05,2017 03:04:17 PM

03:04 pm

PHP time() Function: The time() function is used to get the current time as a
Unix timestamp (the number of seconds since the beginning of the Unix epoch:
January 1, 1970, 00:00:00 GMT).
The following characters can be used to format the time string:

• h: Represents hour in 12-hour format with leading zeros (01 to 12).
• H: Represents hour in 24-hour format with leading zeros (00 to 23).
• i: Represents minutes with leading zeros (00 to 59).
• s: Represents seconds with leading zeros (00 to 59).
• a: Represents lowercase antemeridian and post meridian (am or pm).
• A: Represents uppercase antemeridian and post meridian (AM or PM).

Example: The below example explains the usage of the time() function in PHP.

• PHP

<?php
 $timestamp= time();
 echo($timestamp);
 echo"\n";
 echo(date("F d, Y h:i:s A", $timestamp));
?>

Output:
1512486297

December 05, 2017 03:04:57 PM

PHP mktime() Function: The mktime() function is used to create the timestamp
for a specific date and time. If no date and time are provided, the timestamp for
the current date and time is returned.
Syntax:
mktime(hour, minute, second, month, day, year)

Example: The below example explains the usage of the mktime() function in
PHP.

https://www.geeksforgeeks.org/php-time-function/
https://www.geeksforgeeks.org/php-mktime-function/

• PHP

<?php
 echomktime(23, 21, 50, 11, 25, 2017);
?>

Output:
1511652110

The above code creates a time stamp for 25th Nov 2017,23 hrs 21mins 50secs.

PHP File System
In this tutorial you will learn how to create, access (or read) and manipulate
files dynamically using the PHP's file system functions.

Working with Files in PHP
Since PHP is a server side programming language, it allows you to work with
files and directories stored on the web server. In this tutorial you will learn how
to create, access, and manipulate files on your web server using the PHP file
system functions.

Opening a File with PHP fopen() Function
To work with a file you first need to open the file. The PHP fopen() function is
used to open a file. The basic syntax of this function can be given with:

fopen(filename, mode)

The first parameter passed to fopen() specifies the name of the file you want
to open, and the second parameter specifies in which mode the file should be
opened. For example:

Example
Run this code »
<?php
$handle = fopen("data.txt", "r");
?>

The file may be opened in one of the following modes:

Modes What it does

r Open the file for reading only.

r+ Open the file for reading and writing.

w Open the file for writing only and clears the contents of file. If the file does not
exist, PHP will attempt to create it.

w+ Open the file for reading and writing and clears the contents of file. If the file does
not exist, PHP will attempt to create it.

a Append. Opens the file for writing only. Preserves file content by writing to the end
of the file. If the file does not exist, PHP will attempt to create it.

https://www.tutorialrepublic.com/codelab.php?topic=php&file=open-a-file
https://www.tutorialrepublic.com/codelab.php?topic=php&file=open-a-file

a+ Read/Append. Opens the file for reading and writing. Preserves file content by
writing to the end of the file. If the file does not exist, PHP will attempt to create it.

x Open the file for writing only. Return FALSE and generates an error if the file
already exists. If the file does not exist, PHP will attempt to create it.

x+ Open the file for reading and writing; otherwise it has the same behavior as 'x'.

If you try to open a file that doesn't exist, PHP will generate a warning
message. So, to avoid these error messages you should always implement a
simple check whether a file or directory exists or not before trying to access it,
with the PHP file_exists() function.

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file
if(file_exists($file)){
 // Attempt to open the file
 $handle = fopen($file, "r");
} else{
 echo "ERROR: File does not exist.";
}
?>

Tip: Operations on files and directories are prone to errors. So it's a good
practice to implement some form of error checking so that if an error occurs
your script will handle the error gracefully. See the tutorial on PHP error
handling.

Closing a File with PHP fclose() Function
Once you've finished working with a file, it needs to be closed.
The fclose() function is used to close the file, as shown in the following
example:

Example
Run this code »
<?php
$file = "data.txt";

https://www.tutorialrepublic.com/codelab.php?topic=php&file=check-file-exists-or-not
https://www.tutorialrepublic.com/codelab.php?topic=php&file=check-file-exists-or-not
https://www.tutorialrepublic.com/php-tutorial/php-error-handling.php
https://www.tutorialrepublic.com/php-tutorial/php-error-handling.php
https://www.tutorialrepublic.com/codelab.php?topic=php&file=close-a-file
https://www.tutorialrepublic.com/codelab.php?topic=php&file=close-a-file

// Check the existence of file
if(file_exists($file)){
 // Open the file for reading
 $handle = fopen($file, "r") or die("ERROR: Cannot open the
file.");

 /* Some code to be executed */

 // Closing the file handle
 fclose($handle);
} else{
 echo "ERROR: File does not exist.";
}
?>

Note: Although PHP automatically closes all open files when script
terminates, but it's a good practice to close a file after performing all the
operations.

Reading from Files with PHP fread() Function
Now that you have understood how to open and close files. In the following
section you will learn how to read data from a file. PHP has several functions
for reading data from a file. You can read from just one character to the entire
file with a single operation.

Reading Fixed Number of Characters
The fread() function can be used to read a specified number of characters
from a file. The basic syntax of this function can be given with.

fread(file handle, length in bytes)

This function takes two parameter — A file handle and the number of bytes to
read. The following example reads 20 bytes from the "data.txt" file including
spaces. Let's suppose the file "data.txt" contains a paragraph of text "The
quick brown fox jumps over the lazy dog."

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file

https://www.tutorialrepublic.com/codelab.php?topic=php&file=read-strings-of-characters
https://www.tutorialrepublic.com/codelab.php?topic=php&file=read-strings-of-characters

if(file_exists($file)){
 // Open the file for reading
 $handle = fopen($file, "r") or die("ERROR: Cannot open the
file.");

 // Read fixed number of bytes from the file
 $content = fread($handle, "20");

 // Closing the file handle
 fclose($handle);

 // Display the file content
 echo $content;
} else{
 echo "ERROR: File does not exist.";
}
?>

The above example will produce the following output:

The quick brown fox

Reading the Entire Contents of a File
The fread() function can be used in conjugation with the filesize() function
to read the entire file at once. The filesize() function returns the size of the
file in bytes.

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file
if(file_exists($file)){
 // Open the file for reading
 $handle = fopen($file, "r") or die("ERROR: Cannot open the
file.");

 // Reading the entire file
 $content = fread($handle, filesize($file));

 // Closing the file handle
 fclose($handle);

 // Display the file content
 echo $content;
} else{

https://www.tutorialrepublic.com/codelab.php?topic=php&file=read-entire-file
https://www.tutorialrepublic.com/codelab.php?topic=php&file=read-entire-file

 echo "ERROR: File does not exist.";
}
?>

The above example will produce the following output:

The quick brown fox jumps over the lazy dog.

The easiest way to read the entire contents of a file in PHP is with
the readfile() function. This function allows you to read the contents of a file
without needing to open it. The following example will generate the same
output as above example:

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file
if(file_exists($file)){
 // Reads and outputs the entire file
 readfile($file) or die("ERROR: Cannot open the file.");
} else{
 echo "ERROR: File does not exist.";
}
?>

The above example will produce the following output:

The quick brown fox jumps over the lazy dog.

Another way to read the whole contents of a file without needing to open it is
with the file_get_contents() function. This function accepts the name and
path to a file, and reads the entire file into a string variable. Here's an
example:

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file
if(file_exists($file)){
 // Reading the entire file into a string
 $content = file_get_contents($file) or die("ERROR: Cannot open
the file.");

 // Display the file content
 echo $content;

https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-all-contents-of-a-file
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-all-contents-of-a-file
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-file-contents-as-a-string
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-file-contents-as-a-string

} else{
 echo "ERROR: File does not exist.";
}
?>

One more method of reading the whole data from a file is the
PHP's file() function. It does a similar job to file_get_contents() function,
but it returns the file contents as an array of lines, rather than a single string.
Each element of the returned array corresponds to a line in the file.

To process the file data, you need to iterate over the array using a foreach
loop. Here's an example, which reads a file into an array and then displays it
using the loop:

Example
Run this code »
<?php
$file = "data.txt";

// Check the existence of file
if(file_exists($file)){
 // Reading the entire file into an array
 $arr = file($file) or die("ERROR: Cannot open the file.");
 foreach($arr as $line){
 echo $line;
 }
} else{
 echo "ERROR: File does not exist.";
}
?>

Writing the Files Using PHP fwrite() Function
Similarly, you can write data to a file or append to an existing file using the
PHP fwrite() function. The basic syntax of this function can be given with:

fwrite(file handle, string)

The fwrite() function takes two parameter — A file handle and the string of
data that is to be written, as demonstrated in the following example:

Example
Run this code »
<?php

https://www.tutorialrepublic.com/php-tutorial/php-loops.php
https://www.tutorialrepublic.com/php-tutorial/php-loops.php
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-file-contents-as-an-array
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-file-contents-as-an-array
javascript:void(0);
javascript:void(0);

$file = "note.txt";

// String of data to be written
$data = "The quick brown fox jumps over the lazy dog.";

// Open the file for writing
$handle = fopen($file, "w") or die("ERROR: Cannot open the file.");

// Write data to the file
fwrite($handle, $data) or die ("ERROR: Cannot write the file.");

// Closing the file handle
fclose($handle);

echo "Data written to the file successfully.";
?>

In the above example, if the "note.txt" file doesn't exist PHP will automatically
create it and write the data. But, if the "note.txt" file already exist, PHP will
erase the contents of this file, if it has any, before writing the new data,
however if you just want to append the file and preserve existing contents just
use the mode a instead of w in the above example.

An alternative way is using the file_put_contents() function. It is counterpart
of file_get_contents() function and provides an easy method of writing the
data to a file without needing to open it. This function accepts the name and
path to a file together with the data to be written to the file. Here's an example:

Example
Run this code »
<?php
$file = "note.txt";

// String of data to be written
$data = "The quick brown fox jumps over the lazy dog.";

// Write data to the file
file_put_contents($file, $data) or die("ERROR: Cannot write the
file.");

echo "Data written to the file successfully.";
?>

If the file specified in the file_put_contents() function already exists, PHP will
overwrite it by default. If you would like to preserve the file's contents you can
pass the special FILE_APPEND flag as a third parameter to
the file_put_contents() function. It will simply append the new data to the file
instead of overwitting it. Here's an example:

https://www.tutorialrepublic.com/php-tutorial/php-file-system.php
javascript:void(0);
javascript:void(0);

Example
Run this code »
<?php
$file = "note.txt";

// String of data to be written
$data = "The quick brown fox jumps over the lazy dog.";

// Write data to the file
file_put_contents($file, $data, FILE_APPEND) or die("ERROR: Cannot
write the file.");

echo "Data written to the file successfully.";
?>

Renaming Files with PHP rename() Function
You can rename a file or directory using the PHP's rename() function, like this:

Example
Run this code »
<?php
$file = "file.txt";

// Check the existence of file
if(file_exists($file)){
 // Attempt to rename the file
 if(rename($file, "newfile.txt")){
 echo "File renamed successfully.";
 } else{
 echo "ERROR: File cannot be renamed.";
 }
} else{
 echo "ERROR: File does not exist.";
}
?>

Removing Files with PHP unlink() Function

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

You can delete files or directories using the PHP's unlink() function, like this:

Example
Run this code »
<?php
$file = "note.txt";

// Check the existence of file
if(file_exists($file)){
 // Attempt to delete the file
 if(unlink($file)){
 echo "File removed successfully.";
 } else{
 echo "ERROR: File cannot be removed.";
 }
} else{
 echo "ERROR: File does not exist.";
}
?>

In the next chapter we will learn more about parsing directories or folders in
PHP.

PHP Filesystem Functions
The following table provides the overview of some other useful PHP filesystem
functions that can be used for reading and writing the files dynamically.

Function Description

fgetc() Reads a single character at a time.

fgets() Reads a single line at a time.

fgetcsv() Reads a line of comma-separated values.

filetype() Returns the type of the file.

feof() Checks whether the end of the file has been reached.

is_file() Checks whether the file is a regular file.

is_dir() Checks whether the file is a directory.

is_executable() Checks whether the file is executable.

javascript:void(0);
javascript:void(0);
https://www.tutorialrepublic.com/php-tutorial/php-parsing-directories.php

realpath() Returns canonicalized absolute pathname.

rmdir() Removes an empty directory.

Please check out the PHP filesystem reference for other useful PHP
filesystem functions.

https://www.tutorialrepublic.com/php-reference/php-file-system-functions.php

Unit-5

PHP WITH OOPS CONCEPT

Object-oriented programming is a programming model organized around Object

rather than the actions and data rather than logic.

Class:

A class is an entity that determines how an object will behave and what the object

will contain. In other words, it is a blueprint or a set of instruction to build a specific

type of object.

In PHP, declare a class using the class keyword, followed by the name of the class

and a set of curly braces ({}).

This is the blueprint of the construction work that is class, and the houses and

apartments made by this blueprint are the objects.

23.4M

541

Features of Java - Javatpoint

Syntax to Create Class in PHP

https://www.javatpoint.com/php-oops-concepts
https://www.javatpoint.com/php-oops-concepts
https://www.javatpoint.com/php-oops-concepts

1. <?php

2. class MyClass

3. {

4. // Class properties and methods go here

5. }

6. ?>

Important note:

In PHP, to see the contents of the class, use var_dump(). The var_dump() function is

used to display the structured information (type and value) about one or more

variables.

Syntax:

1. var_dump($obj);

Object:

A class defines an individual instance of the data structure. We define a class once

and then make many objects that belong to it. Objects are also known as an instance.

An object is something that can perform a set of related activities.

Syntax:

1. <?php

2. class MyClass

3. {

4. // Class properties and methods go here

5. }

6. $obj = new MyClass;

7. var_dump($obj);

8. ?>

Example of class and object:

https://www.javatpoint.com/php-oops-concepts
https://www.javatpoint.com/php-oops-concepts

1. <?php

2. class demo

3. {

4. private $a= "hello javatpoint";

5. public function display()

6. {

7. echo $this->a;

8. }

9. }

10. $obj = new demo();

11. $obj->display();

12. ?>

Output:

Example 2: Use of var_dump($obj);

1. <?php

2. class demo

3. {

4. private $a= "hello javatpoint";

5. public function display()

6. {

7. echo $this->a;

8. }

9. }

10. $obj = new demo();

11. $obj->display();

12. var_dump($obj);

13. ?>

Output:

Inheritance

It is a concept of accessing the features of one class from another class. If we inherit

the class features into another class, we can access both class properties. We can

extends the features of a class by using 'extends' keyword.

o It supports the concept of hierarchical classification.

o Inheritance has three types, single, multiple and multilevel Inheritance.

o PHP supports only single inheritance, where only one class can be derived from

single parent class.

o We can simulate multiple inheritance by using interfaces.

Example 1

1. <?php

2. class a

3. {

4. function fun1()

5. {

6. echo "javatpoint";

7. }

8. }

9. class b extends a

10. {

11. function fun2()

12. {

13. echo "SSSIT";

14. }

15. }

16. $obj= new b();

17. $obj->fun1();

18. ?>

Output:

Example 2

1. <?php

2. class demo

3. {

4. public function display()

5. {

6. echo "example of inheritance ";

7. }

8. }

9. class demo1 extends demo

10. {

11. public function view()

12. {

13. echo "in php";

14. }

15. }

16. $obj= new demo1();

17. $obj->display();

18. $obj->view();

19. ?>

Output:

PHP Form Handling

We can create and use forms in PHP. To get form data, we need to use PHP

superglobals $_GET and $_POST.

The form request may be get or post. To retrieve data from get request, we need to

use $_GET, for post request $_POST.

PHP Get Form

Get request is the default form request. The data passed through get request is

visible on the URL browser so it is not secured. You can send limited amount of data

through get request.

Let's see a simple example to receive data from get request in PHP.

SQL CREATE TABLE

File: form1.html

<form action="welcome.php" method="get">

Name: <input type="text" name="name"/>

<input type="submit" value="visit"/>

</form>

File: welcome.php

<?php

$name=$_GET["name"];//receiving name field value in $name variable

echo "Welcome, $name";

?>

PHP Post Form

Post request is widely used to submit form that have large amount of data such as

file upload, image upload, login form, registration form etc.

The data passed through post request is not visible on the URL browser so it is

secured. You can send large amount of data through post request.

Let's see a simple example to receive data from post request in PHP.

File: form1.html

<form action="login.php" method="post">

<table>

<tr><td>Name:</td><td> <input type="text" name="name"/></td></tr>

<tr><td>Password:</td><td> <input type="password" name="password"/></td></tr

>

<tr><td colspan="2"><input type="submit" value="login"/> </td></tr>

</table>

</form>

File: login.php

<?php

$name=$_POST["name"];//receiving name field value in $name variable

$password=$_POST["password"];//receiving password field value in $password va

riable

echo "Welcome: $name, your password is: $password";

?>

Output:

PHP Cookie

PHP cookie is a small piece of information which is stored at client browser. It is used

to recognize the user.

Cookie is created at server side and saved to client browser. Each time when client

sends request to the server, cookie is embedded with request. Such way, cookie can

be received at the server side.

In short, cookie can be created, sent and received at server end.

Exception Handling in PHP

Exception handling is a powerful mechanism of PHP, which is used to handle runtime

errors (runtime errors are called exceptions). So that the normal flow of the

application can be maintained.

The main purpose of using exception handling is to maintain the normal execution

of the application.

What is an Exception?

An exception is an unexcepted outcome of a program, which can be handled by the

program itself. Basically, an exception disrupts the normal flow of the program. But it

is different from an error because an exception can be handled, whereas an error

cannot be handled by the program itself.

In other words, - "An unexpected result of a program is an exception, which can be

handled by the program itself." Exceptions can be thrown and caught in PHP.

Next

Stay

Why needs Exception Handling?

PHP provides a powerful mechanism, exception handling. It allows you to handle

runtime errors such as IOException, SQLException, ClassNotFoundException, and

more. A most popular example of exception handling is - divide by zero exception,

which is an arithmetic exception.

Note: Exception handling is required when an exception interrupts the normal

execution of the program or application.

Exception handling is almost similar in all programming languages. It changes the

normal flow of the program when a specified error condition occurs, and this

condition is known as exception. PHP offers the following keywords for this purpose:

try -

The try block contains the code that may have an exception or where an exception

can arise. When an exception occurs inside the try block during runtime of code, it is

caught and resolved in catch block. The try block must be followed by catch or finally

block. A try block can be followed by minimum one and maximum any number of

catch blocks.

catch -

The catch block contains the code that executes when a specified exception is

thrown. It is always used with a try block, not alone. When an exception occurs, PHP

finds the matching catch block.

throw -

It is a keyword used to throw an exception. It also helps to list all the exceptions that

a function throws but does not handle itself.

Remember that each throw must have at least one "catch".

finally -

The finally block contains a code, which is used for clean-up activity in PHP. Basically,

it executes the essential code of the program.

What happens when an exception is triggered -

o The current state of code is saved.

o The execution of the code is switched to a predefined exception handler function.

o Depending on the situation, the handler can halt the execution of program, resume

the execution from the saved code state, or continue the execution of the code from

another location in the code.

Advantage of Exception Handling over Error Handling

Exception handling is an important mechanism in PHP, which have the following

advantages over error handling -

Grouping of error types -

In PHP, both basic and objects can be thrown as exception. It can create a hierarchy

of exception objects and group exceptions in classes and also classify them

according to their types.

Keep error handling and normal code separate -

In traditional error handling, if-else block is used to handle errors. It makes the code

unreadable because the code for handling errors and conditions got mixed. Within

the try-catch block, exception keeps separate from the code and code become

readable.

FRONT END AND BACK END DATABASE

CONNECTIVITY.

Front end code:

<html>

<head>

<title>Registration</title>

</head>

<body bgcolor="orange">

<center><h1>Registration</h1>

<form action="welcome.php"

method="post">

ENTER NAME:<input type="text"

name="Name"></br>

ENTER PASSWORD:<input type="text"

name="Password"></br>

ENTER EMAIL:<input type="text"

name="Email"></br>

ENTER COUNTRY:<input type="text"

name="Country"></br>

<input type="submit" value="REGISTER">

<input type="reset" value="RESET">

</form>

</center>

</body>

</html>

Backend Code: (PHP)

<?php

$Name=$_POST['Name'];

$Password=$_POST['Password'];

$Email=$_POST['Email'];

$Country=$_POST['Country'];

$conn = new
mysqli('localhost:3306','root','','nd');

if($conn->connect_error)

{

die('Connection failed :'.$conn-
>connect_error);

}

else

{

$stmt=$conn->prepare("insert into nt(Name,
Password, Email, Country) value(?,?,?,?)");

$stmt->bind_param('ssss',$Name,
$Password, $Email, $Country);

$stmt->execute();

echo "Welcome: $Name Registration
Successfully....";

$stmt->close();

$conn->close();

}

?>

